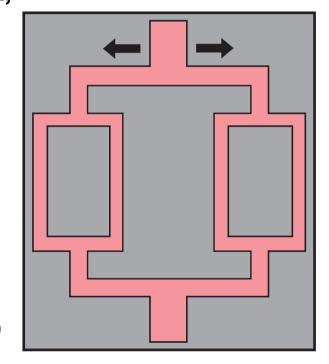
Allgemeine Pathologie Kreislaufstörungen

3. Teil

Arterielle Hyperämie mit Stromverlangsamung (1):


Pathogenese:

entwickelt sich aus einer art. Hyperämie mit Strombeschleu-

nigung, wenn diese längere Zeit besteht, und zwar in den minderdurchbluteten ("abgeschalteten") Gebieten aufgrund der Autoregulation (v.a. Anfall von Laktat), "die Schleusen machen auf"

Vorkommen:

von Bedeutung eigentlich nur im Schock im Anschluß an die Phase der Zentralisation (Phase der Vasoparalyse)

Arterielle Hyperämie mit Stromverlangsamung (2):

Achtung:

auch bei der venösen Hyperämie ist die Endstrombahn hochgradig blutgefüllt (!), d.h. die Veränderungen sind ähnlich

Makro:

- bläulich-rote Farbe des Gewebes, da das Hämoglobin nicht mehr ausreichend Sauerstoff-gesättigt ist (Umschlag von rot > blau = Zyanose)
- Kapillaren können undeutlich gezeichnet sein (z.B. Konjunktiven)

Arterielle Hyperämie mit Stromverlangsamung (3):

Histo:

- hochgradige Füllung der Endstrombahn
- Zunahme der Aggregation der Erythrozyten (Geldrollen-Bildung) aufgrund der abnehmenden Fließgeschwindigkeit
- Stase des Blutes (Stehenbleiben) mit "Verbacken" der Erys untereinander (sog. Blutschlamm-Bildung = blood sludge)

Kreislaufstörungen

Stase $1000 \, s^{-1}$

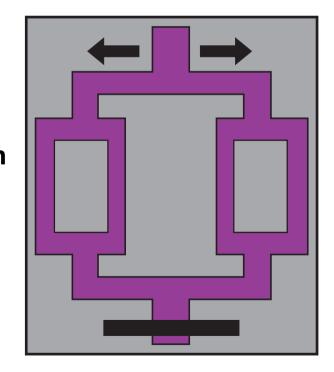
Fließgeschwindigkeit der Erythrozyten hoch >> niedrig

typische Geldrollen-Bildung

Arterielle Hyperämie mit Stromverlangsamung (4):

Folgen:

- die mangelhafte Durchblutung führt zur unzureichenden Versorgung von Endothelzellen und Gefäßwand
- Nekrose der Endothelzellen
- zunehmende Durchlässigkeit der Gefäße insbesondere auch für Erys
- > Blutungsbereitschaft (hämorrhagische Diathese)



Venöse Hyperämie (1):

= passive Hyperämie, Stauungshyperämie, Kongestion

Pathogenese:

- Behinderung des venösen Abflusses
- bei erhaltenem arteriellen Zufluß
- evtl. auch gestörte Lymphdrainage
- > hochgradige Füllung der Endstrombahn
- auch hier kommt es zur Mangelversorgung von Gefäßwand und umgebendem Gewebe (!)

Venöse Hyperämie (2):

Vorkommen:

- zentral bedingt (akute oder chronische Herzinsuffizienz)
- Abflußstörungen von Venen durch
 - Kompression von außen

Lageveränderung von Organen (+++)

Tumoren

- Verlegung (Obturation) von innen

Thrombose (Gerinnselbildung)

Entzündung der Venenwand

Venöse Hyperämie (3):

Achtung:

das makroskopische und histologische Bild hängen ab von:

- der Schwere des Venenverschlusses

Grad der Verlegung des Gefäßes

Größe der betroffenen Venen

Verkommen von Kollateralgefäßen (über die Blut abfließen kann)

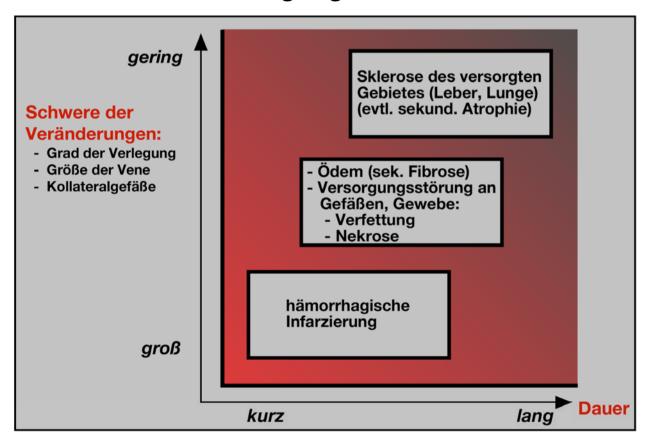
- der <u>Dauer</u> der passiven Hyperämie

Venöse Hyperämie (4):

Makro:

unauffällig bis zu blauroten (Zyanose) bis schwarzen Organen, vergrößert, blutreich, kühler

Histo:


- hochgradige Füllung der Venen und Kapillaren
- sludge-Bildung
- Austritt von Flüssigkeit und Erys aus den Gefäßen

Venöse Hyperämie (5):

Folgen:

je nach Schwere der Verlegung und ihrer Dauer

Venöse Hyperämie (6):

Folgen (1):

- 1. Chronische passive H. mit geringgradiger Abflußstörung häufig zentrale Ursachen (Links- bzw. Rechtsherzinsuffizienz
 - > Sklerose des Organs (Lunge, Leber) durch Zubildung von Kollagenfasern (sog. Stauungsinduration), evtl. auch Atrophie des Organs

Venöse Hyperämie (7):

Folgen (2):

2. Subakute passive H. mit mittelgradiger Abflußstörung

- Ödembildung = Stauungs-Transsudat (niedermolekular, Spez. Gew. < 1018), muß in Körperhöhlen vom höhermolekularen Entzündungs-Exsudat (s.u.) abgegrenzt werden (Spez. Gew. > 1018; z.B. Rivalta-Probe)
- aufgrund der behinderten Versorgung des Gewebes evtl. auch dystrophische Veränderungen (Hypoxidose (= Sauerstoffmangel) > Verfettung / Einwässerung > Nekrose), vor allem an der Leber

Venöse Hyperämie (8):

Folgen (3):

3. Akute passive H. mit vollständiger Abflußstörung

= hämorrhagische Infarzierung (Hineinstopfen von Blut)

Hämorrhagische Infarzierung (1):

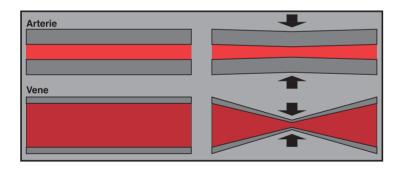
Vorkommen:

insbesondere bei Lageveränderungen von Organen, vor allem des Darmes

Drehung Torsio, Rotatio, Volvolus

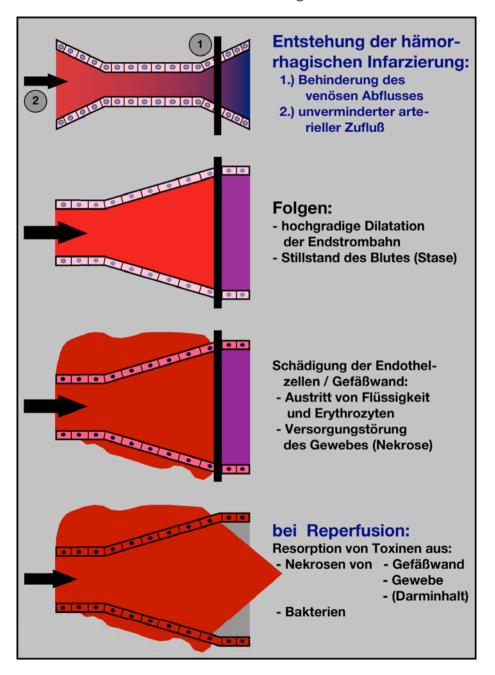
Einschiebung Invaginatio

Vorfall Prolaps


entsprechende Veränderungen bei Brüchen, wenn sich Organteile in der Bruchpforte einklemmen > Inkarzeration

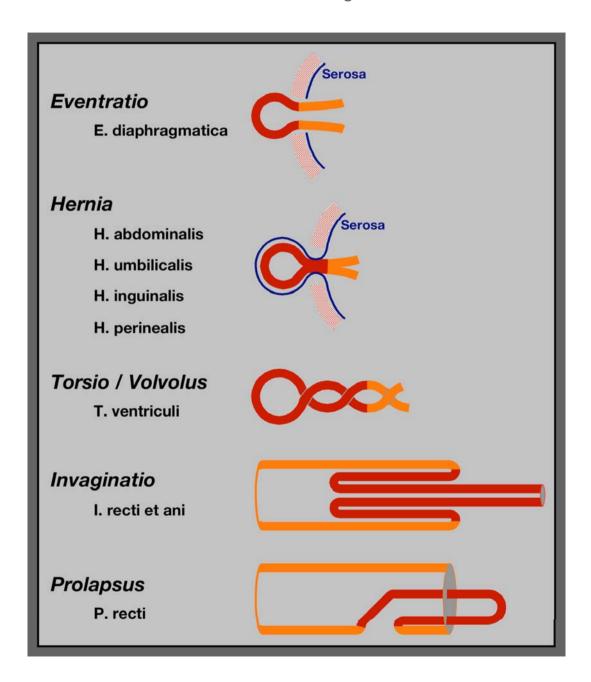
Hämorrhagische Infarzierung (2):

Pathogenese:


 Kompression der dünnerwandigen Venen, durch die noch offenen dickwandigen Arterien wird weiterhin Blut in die Gefäße und damit das Gewebe gepumpt

- Nekrose von Endothelzellen und Gefäßwand
- Austritt von Flüssigkeit und Erys
- Schäden vor allem durch die Folgen (s.u.)

Kreislaufstörungen


Hämorrhagische Infarzierung (3):

Makro:

- Organe dunkelrot bis schwarz
- ödematisiert
- Austritt von Blut in das Lumen (Darm)

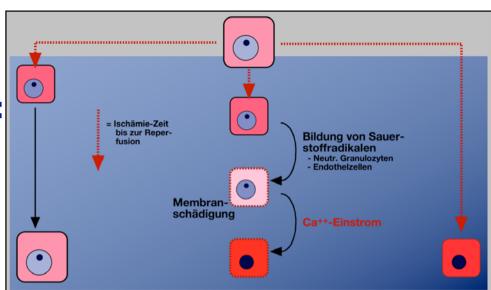
Kreislaufstörungen

Hämorrhagische Infarzierung (4):

Histo:

- hochgradig gefüllte Gefäße
- Austritt von Erythrozyten
- Nekrose des Gewebes
- das Bild ist makroskopisch meist beeindruckender

Hämorrhagische Infarzierung (5):


Folgen:

- im Falle einer spontanen oder operativen Reponierung der verlagerten Organteile kommt es zu deren Reperfusion
- daraus können sich folgende Probleme ergeben:
 - Resorption von Toxinen aus dem nekrotischen Gewebe, Darminhalt, Bakterien (vor allem das Endotoxin aus der Zellwand gramnegativer Bakterien, z.B. E. coli) mit der möglichen Folge eines tödlichen (Endotoxin-)Schocks
 - es kann zu sog. Reperfusions-Schäden kommen

Reperfusions-Schaden (1):

mögliche Folgen der Wiederdurchblutung nach lokalem Kreislaufstillstand von:

- kurzer Dauer > Rückkehr zum Normalzustand
- langer Dauer > irreversibler Untergang des Gewebes
- mittlerer Dauer > Zufuhr von Sauerstoff
 - Ansammlung von neutr. Granulozyten
 - Bildung von Sauerstoffradikalen
 - Membranschädigung
 - Einstrom von Calcium++
 - Untergang der Zellen
 - >>> die noch vitalen Zellen werden durch die Zufuhr von frischem Blut irreversibel geschädigt

Hämorrhagische Infarzierung:

es müssen dringend unterschieden werden:

	Hämorrhagischer Infarkt	Hämorrhagische Infarzierung
primär	Nekrose des Ge- webes	Durchblutungs- störung
sekundär	Einbluten	Nekrose des Ge- webes

Hypostase (Blutversackung, Senkungsblutfülle):

Vork:

- postmortales Absinken des Blutes entsprechend der Schwerkraft
- zuerst noch intravasal, später nach Auflösung der postmortalen Gerinnung auch extravaskulär

Makro:

- eines der sog. Zeichen des Todes
- die Leichenflecken an der Haut (Livores)
- an paarigen Organen ist das unten gelegene Organ dunkelrot gefärbt (bei Bildung von Sulfmethämoglobin dann graugrün verfärbt)

